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Summary

Interactions of covariates and grouping factors

I For longitudinal data, having a random effect for the slope
w.r.t. time by subject is reasonably easy to understand.

I Although not generally presented in this way, these random
effects are an interaction term between the grouping factor for
the random effect (Subject) and the time covariate.

I We can also define interactions between a categorical
covariate and a random-effects grouping factor.

I Different ways of expressing such interactions lead to different
numbers of random effects. These different definitions have
different levels of complexity, affecting both their expressive
power and the ability to estimate all the parameters in the
model.

Machines data

I Milliken and Johnson (1989) provide (probably artificial) data
on an experiment to measure productivity according to the
machine being used for a particular operation.

I In the experiment, a sample of six different operators used
each of the three machines on three occasions — a total of
nine runs per operator.

I These three machines were the specific machines of interest
and we model their effect as a fixed-effect term.

I The operators represented a sample from the population of
potential operators. We model this factor, (Worker), as a
random effect.

I This is a replicated “subject/stimulus” design with a fixed set
of stimuli that are themselves of interest. (In other situations
the stimuli may be a sample from a population of stimuli.)



Machines data plot

Quality and productivity score
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Comments on the data plot

I There are obvious differences between the scores on different
machines.

I It seems likely that Worker will be a significant random effect,
especially when considering the low variation within replicates.

I There also appears to be a significant Worker:Machine
interaction. Worker 6 has a very different pattern w.r.t.
machines than do the others.

I We can approach the interaction in one of two ways: define
simple, scalar random effects for Worker and for the
Worker:Machine interaction or define vector-valued random
effects for Worker

Random effects for subject and subject:stimulus

Linear mixed model fit by REML

Formula: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

Data: Machines

AIC BIC logLik deviance REMLdev

227.7 239.6 -107.8 225.5 215.7

Random effects:

Groups Name Variance Std.Dev.

Worker:Machine (Intercept) 13.90946 3.72954

Worker (Intercept) 22.85849 4.78105

Residual 0.92463 0.96158

Number of obs: 54, groups: Worker:Machine, 18; Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 2.486 21.063

MachineB 7.967 2.177 3.660

MachineC 13.917 2.177 6.393

Characteristics of the scalar interaction model

I The model incorporates simple, scalar random effects for
Worker and for the Worker:Machine interaction.

I These two scalar random-effects terms have q1 = q2 = 1 so
they contribute n1 = 6 and n2 = 18 random effects for a total
of q = 24. There are 2 variance-component parameters.

I The random effects allow for an overall shift in level for each
worker and a separate shift for each combination of worker
and machine. The unconditional distributions of these random
effects are independent. The unconditional variances of the
interaction random effects are constant.

I The main restriction in this model is the assumption of
constant variance and independence of the interaction random
effects.



Model matrix ZT for the scalar interaction model
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I Because we know these are scalar random effects we can
recognize the pattern of a balanced, nested, two-factor design,
similar to that of the model for the Pastes data.

Vector-valued random effects by subject

Linear mixed model fit by REML

Formula: score ~ Machine + (0 + Machine | Worker)

Data: Machines

AIC BIC logLik deviance REMLdev

228.3 248.2 -104.2 216.6 208.3

Random effects:

Groups Name Variance Std.Dev. Corr

Worker MachineA 16.64097 4.07933

MachineB 74.39556 8.62529 0.803

MachineC 19.26756 4.38948 0.623 0.771

Residual 0.92463 0.96158

Number of obs: 54, groups: Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 1.681 31.150

MachineB 7.967 2.421 3.291

MachineC 13.917 1.540 9.037

Characteristics of the vector-valued r.e. model
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I We use the specification (0 + Machine|Worker) to force an
“indicator” parameterization of the random effects.

I In this image the 1’s are black. The gray positions are
non-systematic zeros (initially zero but can become nonzero).

I Here k = 1, q1 = 3 and n1 = 6 so we have q = 18 random
effects but q1(q1 + 1)/2 = 6 variance-component parameters
to estimate.

Comparing the model fits

I Although not obvious from the specifications, these model fits
are nested. If the variance-covariance matrix for the
vector-valued random effects has a special form, called
compound symmetry, the model reduces to model fm1.

I The p-value of 6.5% may or may not be significant.

> fm2M <- update(fm2, REML = FALSE)
> fm1M <- update(fm1, REML = FALSE)
> anova(fm2M, fm1M)

Data: Machines

Models:

fm1M: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

fm2M: score ~ Machine + (0 + Machine | Worker)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm1M 6 237.27 249.20 -112.64

fm2M 10 236.42 256.31 -108.21 8.8516 4 0.06492



Model comparisons eliminating the unusual combination

I In a case like this we may want to check if a single, unusual
combination (Worker 6 using Machine “B”) causes the more
complex model to appear necessary. We eliminate that
unusual combination.

> Machines1 <- subset(Machines, !(Worker == "6" & Machine ==
+ "B"))
> xtabs(~Machine + Worker, Machines1)

Worker

Machine 1 2 3 4 5 6

A 3 3 3 3 3 3

B 3 3 3 3 3 0

C 3 3 3 3 3 3

Machines data after eliminating the unusual combination
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Model comparisons without the unusual combination

> fm1aM <- lmer(score ~ Machine + (1 | Worker) + (1 |
+ Worker:Machine), Machines1, REML = FALSE)
> fm2aM <- lmer(score ~ Machine + (0 + Machine | Worker),
+ Machines1, REML = FALSE)
> anova(fm2aM, fm1aM)

Data: Machines1

Models:

fm1aM: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

fm2aM: score ~ Machine + (0 + Machine | Worker)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm1aM 6 208.554 220.145 -98.277

fm2aM 10 208.289 227.607 -94.144 8.2655 4 0.08232

Trade-offs when defining interactions

I It is important to realize that estimating scale parameters (i.e.
variances and covariances) is considerably more difficult than
estimating location parameters (i.e. means or fixed-effects
coefficients).

I A vector-valued random effect term having qi random effects
per level of the grouping factor requires qi(qi + 1)/2
variance-covariance parameters to be estimated. A simple,
scalar random effect for the interaction of a “random-effects”
factor and a “fixed-effects” factor requires only 1 additional
variance-covariance parameter.

I Especially when the “fixed-effects” factor has a moderate to
large number of levels, the trade-off in model complexity
argues against the vector-valued approach.

I One of the major sources of difficulty in using the lme4
package is the tendency to overspecify the number of random
effects per level of a grouping factor.



Brain activation data from West, Welch and Ga lecki (2007)

Activation (mean optical density)
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I In the experiment seven different regions of five rats’ brains
were imaged in a basal condition (after injection with saline
solution) and after treatment with the drug Carbachol. The
data provided are from three regions.

I This representation of the data is similar to the figure on the
cover of West, Welch and Ga lecki (2007).

Brain activation data in an alternative layout

Activation (mean optical density)
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Basal Carbachol

I The animals have similar patterns of changes but different
magnitudes.

Reproducing the models from West et al.

I These data are analyzed in West et al. (2007) allowing for
main effects for treatment and region, a fixed-effects
interaction of these two factors and vector-valued random
effects for the intercept and the treatment by animal.

I Note that this will require estimating three variance
component parameters from data on five animals.

I Their final model also allowed for different residual variances
by treatment. We won’t discuss that here.

I We choose the order of the levels of region to produce the
same parameterization of the fixed effects.

’data.frame’: 30 obs. of 4 variables:

$ animal : Factor w/ 5 levels "R100797","R100997",..: 4 4 4 4 4 4 5 5 5 5 ...

$ treatment: Factor w/ 2 levels "Basal","Carbachol": 1 1 1 2 2 2 1 1 1 2 ...

$ region : Factor w/ 3 levels "VDB","BST","LS": 2 3 1 2 3 1 2 3 1 2 ...

$ activate : num 366 199 187 372 302 ...

Model 5.1 from West et al.

Linear mixed model fit by REML

Formula: activate ~ region * treatment + (1 | animal)

Data: ratbrain

AIC BIC logLik deviance REMLdev

291.3 302.5 -137.6 325.3 275.3

Random effects:

Groups Name Variance Std.Dev.

animal (Intercept) 4849.8 69.64

Residual 2450.3 49.50

Number of obs: 30, groups: animal, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 212.29 38.21 5.556

regionBST 216.21 31.31 6.906

regionLS 25.45 31.31 0.813

treatmentCarbachol 360.03 31.31 11.500

regionBST:treatmentCarbachol -261.82 44.27 -5.914

regionLS:treatmentCarbachol -162.50 44.27 -3.670



Model 5.2 from West et al.

Linear mixed model fit by REML

Formula: activate ~ region * treatment + (treatment | animal)

Data: ratbrain

AIC BIC logLik deviance REMLdev

269.2 283.2 -124.6 292.7 249.2

Random effects:

Groups Name Variance Std.Dev. Corr

animal (Intercept) 1284.3 35.837

treatmentCarbachol 6371.3 79.821 0.801

Residual 538.9 23.214

Number of obs: 30, groups: animal, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 212.29 19.10 11.117

regionBST 216.21 14.68 14.726

regionLS 25.45 14.68 1.733

treatmentCarbachol 360.03 38.60 9.328

regionBST:treatmentCarbachol -261.82 20.76 -12.610

regionLS:treatmentCarbachol -162.50 20.76 -7.826

A variation on model 5.2 from West et al.

Linear mixed model fit by REML

Formula: activate ~ region * treatment + (0 + treatment | animal)

Data: ratbrain

AIC BIC logLik deviance REMLdev

269.2 283.2 -124.6 292.7 249.2

Random effects:

Groups Name Variance Std.Dev. Corr

animal treatmentBasal 1284.3 35.837

treatmentCarbachol 12238.1 110.626 0.902

Residual 538.9 23.214

Number of obs: 30, groups: animal, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 212.29 19.10 11.117

regionBST 216.21 14.68 14.726

regionLS 25.45 14.68 1.733

treatmentCarbachol 360.03 38.60 9.328

regionBST:treatmentCarbachol -261.82 20.76 -12.610

regionLS:treatmentCarbachol -162.50 20.76 -7.826

Simple scalar random effects for the interaction

Linear mixed model fit by REML

Formula: activate ~ region * treatment + (1 | animal) + (1 | animal:treatment)

Data: ratbrain

AIC BIC logLik deviance REMLdev

274.7 287.3 -128.4 302.1 256.7

Random effects:

Groups Name Variance Std.Dev.

animal:treatment (Intercept) 3185.7 56.442

animal (Intercept) 3575.5 59.796

Residual 538.9 23.214

Number of obs: 30, groups: animal:treatment, 10; animal, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 212.29 38.21 5.556

regionBST 216.21 14.68 14.726

regionLS 25.45 14.68 1.733

treatmentCarbachol 360.03 38.60 9.328

regionBST:treatmentCarbachol -261.82 20.76 -12.610

regionLS:treatmentCarbachol -162.50 20.76 -7.826

Prediction intervals for the random effects
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Is this “overmodeling” the data?

I The prediction intervals for the random effects indicate that
the vector-valued random effects are useful, as does a model
comparison.
Data: ratbrain

Models:

m51M: activate ~ region * treatment + (1 | animal)

m52M: activate ~ region * treatment + (treatment | animal)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m51M 8 341.34 352.55 -162.67

m52M 10 312.72 326.73 -146.36 32.615 2 8.276e-08
I However, these models incorporate many fixed-effects

parameters and random effects in a model of a relatively small
amount of data. Is this too much?

I There are several ways we can approach this:
I Simplify the model by considering the difference in activation

under the two conditions within the same animal:region
combination (i.e. approach it like a paired t-test).

I Model the five animals with fixed effects and use F-tests.
I Assess the precision of the variance estimates (done later).

Considering differences

I Before we can analyze the differences at each animal:region
combination we must first calculate them.

I We could do this by subsetting the ratbrain data frame for
the "Basal" and "Carbachol" levels of the treatment
factor and forming the difference of the two activate
columns. For this to be correct we must have the same
ordering of levels of the animal and region factors in each
half. It turns out we do but we shouldn’t count on this
(remember “Murphy’s Law”?).

I A better approach is to reshape the data frame (but this is
complicated) or to use xtabs to align the levels. First we
should check that the data are indeed balanced and
unreplicated.

Checking for balanced and unreplicated; tabling activate
I We saw the balance in the data plots but we can check too

> ftable(xtabs(~treatment + region + animal, ratbrain))

animal R100797 R100997 R110597 R111097 R111397

treatment region

Basal VDB 1 1 1 1 1

BST 1 1 1 1 1

LS 1 1 1 1 1

Carbachol VDB 1 1 1 1 1

BST 1 1 1 1 1

LS 1 1 1 1 1
I In xtabs we can use a two-sided formula to tabulate a variable

> ftable(atab <- xtabs(activate ~ treatment + animal +
+ region, ratbrain))

region VDB BST LS

treatment animal

Basal R100797 237.42 458.16 245.04

R100997 195.51 479.81 261.19

R110597 262.05 462.79 278.33

R111097 187.11 366.19 199.31

R111397 179.38 375.58 204.85

Carbachol R100797 726.96 664.72 587.10

R100997 604.29 515.29 437.56

R110597 621.07 589.25 493.93

R111097 449.70 371.71 302.02

R111397 459.58 492.58 355.74

Taking differences

I The atab object is an array with additional attributes
xtabs [1:2, 1:5, 1:3] 237 727 196 604 262 ...

- attr(*, "dimnames")=List of 3

..$ treatment: chr [1:2] "Basal" "Carbachol"

..$ animal : chr [1:5] "R100797" "R100997" "R110597" "R111097" ...

..$ region : chr [1:3] "VDB" "BST" "LS"

- attr(*, "class")= chr [1:2] "xtabs" "table"

- attr(*, "call")= language xtabs(formula = activate ~ treatment + animal + region, data = ratbrain)

I Use apply to take differences over dimension 1
> (diffs <- as.table(apply(atab, 2:3, diff)))

region

animal VDB BST LS

R100797 489.54 206.56 342.06

R100997 408.78 35.48 176.37

R110597 359.02 126.46 215.60

R111097 262.59 5.52 102.71

R111397 280.20 117.00 150.89



Taking differences (cont’d)

I Finally, convert the table of differences to a data frame.

> str(diffs <- as.data.frame(diffs))

’data.frame’: 15 obs. of 3 variables:

$ animal: Factor w/ 5 levels "R100797","R100997",..: 1 2 3 4 5 1 2 3 4 5 ...

$ region: Factor w/ 3 levels "VDB","BST","LS": 1 1 1 1 1 2 2 2 2 2 ...

$ Freq : num 490 409 359 263 280 ...

> names(diffs)[3] <- "actdiff"

Difference in activation with Carbachol from Basal state
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A model for the differences

Linear mixed model fit by REML

Formula: actdiff ~ region + (1 | animal)

Data: diffs

AIC BIC logLik deviance REMLdev

147.4 150.9 -68.68 162.3 137.4

Random effects:

Groups Name Variance Std.Dev.

animal (Intercept) 6209.9 78.803

Residual 1562.2 39.524

Number of obs: 15, groups: animal, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 360.03 39.42 9.132

regionBST -261.82 25.00 -10.474

regionLS -162.50 25.00 -6.501

Correlation of Fixed Effects:

(Intr) rgnBST

regionBST -0.317

regionLS -0.317 0.500

Using fixed-effects for the animals

I There are five experimental units (animals) in this study. That
is about the lower limit under which we could hope to
estimate variance components.

I We should compare with a fixed-effects model.

I If we wish to evaluate coefficients for treatment or region
we must be careful about the “contrasts” that are used to
create the model. However, the analysis of variance table does
not depend on the contrasts.

I We use aov to fit the fixed-effects model so that a summary is
the analysis of variance table.

I The fixed-effects anova table is the sequential table with main
effects first, then two-factor interactions, etc. The anova table
for an lmer model gives the contributions of the fixed-effects
after removing the contribution of the random effects, which
include the animal:treatment interaction in model m52.

Fixed-effects anova versus random effects

> summary(m52f <- aov(activate ~ animal * treatment +
+ region * treatment, ratbrain))

Df Sum Sq Mean Sq F value Pr(>F)

animal 4 126197 31549 58.544 2.376e-09

treatment 1 358347 358347 664.965 1.844e-14

region 2 100998 50499 93.708 1.465e-09

animal:treatment 4 40384 10096 18.734 6.973e-06

treatment:region 2 87352 43676 81.047 4.244e-09

Residuals 16 8622 539

> anova(m52)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

region 2 100998 50499 93.708

treatment 1 18900 18900 35.072

region:treatment 2 87352 43676 81.047

I Except for the treatment factor, the anova tables are nearly
identical.



Summary

I It is possible to fit complex models to balanced data sets from
carefully designed experiments but one should always be
cautious of creating a model that is too complex.

I I prefer to proceed incrementally, taking time to examine data
plots, rather than starting with a model incorporating all
possible terms.

I Some feel that one should be able to specify the analysis
(and, in particular, the analysis of variance table) before even
beginning to collect data. I am more of a model-builder and
try to avoid dogmatic approaches.

I For the ratbrain data I would be very tempted to take
differences and analyze it as a randomized blocked design.


