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Introduction

Population pharmacokinetic data are often modeled using nonlinear
mixed-effects models (NLMMs).

These are nonlinear because pharmacokinetic parameters - rate
constants, clearance rates, etc. - occur nonlinearly in the model
function.

In statistical terms these are mixed-effects models because they
involve both fixed-effects parameters, applying to the entire
population or well-defined subsets of the population, and random
effects associated with particular experimental or observational units
under study.

Many algorithms for obtaining parameter estimates, usually
“something like” the maximum likelihood estimates (MLEs), for such
models have been proposed and implemented.

Comparing different algorithms is not easy. Even understanding the
definition of the model and the proposed algorithm is not easy.
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An example: Theophylline pharmacokinetics
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These are serum concentration profiles for 12 volunteers after
injestion of an oral dose of Theophylline, as described in Pinheiro and
Bates (2000).
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Modeling pharmacokinetic data with a nonlinear model

These are longitudinal repeated measures data.

For such data the time pattern of an individual’s response is
determined by pharmacokinetic parameters (e.g. rate constants) that
occur nonlinearly in the expression for the expected response.

The form of the nonlinear model is determined by the
pharmacokinetic theory, not derived from the data.

d · ke · ka · C
e−ket − e−kat

ka − ke

These pharmacokinetic parameters vary over the population. We wish
to characterize typical values in the population and the extent of the
variation.

Thus, we associate random effects with the parameters, ka, ke and C
in the nonlinear model.
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Statistical theory and applications - why we need both
For 30 years, I have had the pleasure of being part of the U. of
Wisconsin-Madison Statistics Dept. This year we celebrate the 50th
anniversary of the founding of our department by George Box (who
turned 90 earlier this year).
George’s approach, emphasizing both the theory and the applications
of statistics, has now become second-nature to me.
We are familiar with the dangers of practicing theory without
knowledge of applications. As George famously said, “All models are
wrong; some models are useful.” How can you expect to decide if a
model is useful unless you use it?
We should equally be wary of the application of statistical techniques
for which we know the “how” but not the “why”. Despite the
impression we sometimes give in courses, applied statistics is not just
a “black box” collection of formulas into which you pour your data,
hoping to get back a p-value that is less than 5%. (In the past many
people felt that “applied statistics is the use of SAS” but now we
know better.)
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The evolving role of approximation

When Don Watts and I wrote a book on nonlinear regression we
included a quote from Bertrand Russell, “Paradoxically, all exact
science is dominated by the idea of approximation”. In translating
statistical theory to applied techniques (computing algorithms) we
almost always use some approximations.

Sometimes the theory is deceptively simple (maximum likelihood
estimates are the values of the parameters that maximize the
likelihood, given the data) but the devil is in the details (so exactly
how do I maximize this likelihood?).

Decades of work by many talented people have provided us with a rich
assortment of computational approximations and other tricks to help
us get to the desired answer - or at least close to the desired answer.

It is important to realize that approximations, like all aspects of
computing, have a very short shelf life. Books on theory can be useful
for decades; books on computing may be outmoded in a few years.
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Failure to revisit assumptions leads to absurdities
Forty years ago, when I took an intro engineering stats class, we used
slide rules or pencil and paper for calculations. Our text took this into
account, providing short-cut computational formulas and “rules of
thumb” for the use of approximations, plus dozens of pages of tables
of probabilities and quantiles.
Today’s computing resources are unimaginably more sophisticated yet
the table of contents of most introductory text hasn’t changed.
The curriculum still includes using tables to evaluate probabilities,
calculating coefficient estimates of a simple linear regression by hand,
creating histograms (by hand, probably) to assess a density,
approximating a binomial by a Poisson or by a Gaussian for cases not
available in the tables, etc.
Then we make up PDF slides of this content and put the file on a
web site for the students to download and follow on their laptops
during the lecture. Apparently using the computer to evaluate the
probabilities or to fit a model would be cheating - you are supposed to
do this by hand.
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And what about nonlinear mixed-effects models?

Defining the statistical model is subtle and all methods proposed for
determining parameter estimates use approximations.

Often the many forms of approximations are presented as different
“types” of estimates from which one can pick and choose.

In 2007-2008 a consortium of pharma companies, the NLMEc,
discussed “next generation” simulation and estimation software for
population PK/PD modeling. They issued a set of user requirements
for such software including, in section 4.4 on estimation

The system will support but not be limited to the following
estimation methods: FO, FOI, FOCE, FOCEI, Laplacian,
Lindstrom and Bates, MCMC, MCPEM, SAEM, Gaussian
quadrature, and nonparametric methods.

Note the emphasis on estimation methods (i.e. algorithms). All of
these techniques are supposed to approximate the mle’s but that is
never mentioned.
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Linear and nonlinear mixed-effects models

Both linear and nonlinear mixed-effects models, are based on the
n-dimensional response random variable, Y , whose value, y, is
observed, and the q-dimensional, unobserved random effects variable,
B.

In the models we will consider B ∼ N (0,Σθ). The
variance-covariance matrix Σθ can be huge but it is completely
determined by a small number of variance-component parameters, θ.

The conditional distribution of the response, Y , is

(Y |B = b) ∼ N
(
µY|B, σ

2In
)

The conditional mean, µY|B, depends on b and on the fixed-effects
parameters, β, through a linear predictor expression, Zb+Xβ.

For a linear mixed model (LMM), µY|B is exactly the linear predictor.
For an NLMM the linear predictor determines the parameter values in
the nonlinear model function which then determines the mean.
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Transforming to orthogonal random effects

We never really form Σθ; we always work with the relative covariance
factor, Λθ, defined so that

Σθ = σ2ΛθΛ
ᵀ
θ .

Note that we must allow for Λθ to be less that full rank.

We define a q-dimensional “spherical” or “unit” random-effects
vector, U , such that

U ∼ N
(
0, σ2Iq

)
, B = Λθ U ⇒ Var(B) = σ2ΛθΛ

ᵀ
θ = Σθ.

Setting Uθ = ZΛθ, the linear predictor expression becomes

Zb+Xβ = ZΛθ u+Xβ = Uθ u+Xβ.

where Uθ, like Zθ is a large, sparse matrix.
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The conditional mode, ũθ,β

Although the probability model is defined from (Y |U = u), we
observe y, not u (or b) so we want to work with the other conditional
distribution, (U |Y = y).

The joint distribution of Y and U is Gaussian with density

fY,U (y,u) = fY|U (y|u) fU (u)

=
exp(− 1

2σ2 ‖y − µY|U‖2)
(2πσ2)n/2

exp(− 1
2σ2 ‖u‖2)

(2πσ2)q/2

=
exp(−

[
‖y − µY|U‖2 + ‖u‖2

]
/(2σ2))

(2πσ2)(n+q)/2

The mode, ũθ,β, of the conditional distribution (U |Y = y) (also the
conditional mean in the case of an LMM) is

ũθ,β = argmin
u

[∥∥y − µY|U
∥∥2 + ‖u‖2]
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Minimizing a penalized sum of squared residuals

An expression like
∥∥y − µY|U

∥∥2 + ‖u‖2 is called a penalized sum of

squared residuals because
∥∥y − µY|U

∥∥2 is a sum of squared residuals

and ‖u‖2 is a penalty on the size of the vector u.

Determining ũθ,β as the minimizer of this expression is a penalized
least squares (PLS) problem. For an LMM it is a penalized linear least
squares problem that can be solved directly (i.e. without iterating).
For an NLMM it is a penalized nonlinear least squares problem.

One way to determine the solution in an LMM is to rephrase it as a
linear least squares problem for an extended residual vector

ũθ,β = argmin
u

∥∥∥∥[y −Xβ0

]
−
[
Uθ
Iq

]
u

∥∥∥∥2
This is sometimes called a pseudo-data approach because we create
the effect of the penalty term, ‖u‖2, by adding “pseudo-observations”
to y and to the predictor.
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The profiled deviance for LMMs
We can see that ũθ,β satisfies

(
Uᵀ
θUθ + Iq

)
ũθ,β = Uᵀ

θ (y −Xβ)
which we solve using the sparse Cholesky decomposition

LθL
ᵀ
θ = P

(
Uᵀ
θUθ + Iq

)
P ᵀ

P is a permutation matrix that has practical importance but does not
affect the theory. The matrix Lθ is the sparse, lower-triangular factor.
Let r2(θ,β) be the minimum penalized residual sum of squares, then
`(θ,β, σ|y) = logL(θ,β, σ|y) can be written

−2`(θ,β, σ|y) = n log(2πσ2) +
r2(θ,β)

σ2
+ log(|Lθ|2)

The conditional estimate of σ2 is

σ̂2(θ,β) =
r2(θ,β)

n
producing the profiled deviance

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
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Profiling the deviance with respect to β for LMMs

In a LMM the deviance depends on β only through r2(θ,β) we can
obtain the conditional estimate, β̂θ, by extending the PLS problem to

r2(θ) = min
u,β

[
‖y −Xβ −Uθ u‖2 + ‖u‖2

]
with the solution satisfying the equations[

Uᵀ
θUθ + Iq Uᵀ

θX
XᵀUθ XᵀX

] [
ũθ
β̂θ

]
=

[
Uᵀ
θ y

Xᵀy.

]
The profiled deviance, which is a function of θ only, is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ)

n

)]
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Conditional mode and profiled Laplace approximation for
NLMMs

As previously stated, determining the conditional mode

ũθ,β = argmin
u

[∥∥y − µY|U
∥∥2 + ‖u‖2]

in an NLMM is a penalized nonlinear least squares (PNLS) problem.
It is a nonlinear optimization problem but a comparatively simple one.
The penalty term regularizes the optimization.
The Laplace approximation to the profiled deviance (profiled over σ2)
is, as before,

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
where Lθ is the sparse Cholesky factor evaluated at the conditional
mode.
The motivation for this approximation is that it replaces the
conditional distribution, (U |Y = y), for parameters β, θ and σ, by a
multivariate Gaussian approximation, evaluated at the mode.
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Laplace approximation and adaptive Gauss-Hermite
quadrature

The Laplace approximation

−2˜̀(θ,β|y) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
is a type of smoothing objective consisting of two terms:

n
[
1 + log

(
2πr2(θ,β)

n

)]
, which measures fidelity to the data, and

log(|Lθ|2), which measures the complexity of the model.

For models with a simple structure for the random effects (the
matrices Σθ and Λθ are block diagonal consisting of a large number
of small blocks) a further enhancement is to use adaptive
Gauss-Hermite quadrature, requiring values of the RSS at several
points near ũθ,β
Note that the modifier adaptive, meaning evaluating at the
conditional mode, is important. Gauss-Hermite quadrature without
first determining the conditional mode is not a good idea.
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Consequences for comparisons of methods

We should distinguish between an algorithm, which is a sort of a
black box, and a criterion, such as maximizing the likelihood (or,
equivalently, minimizing the deviance.

The criterion is based on the statistical model and exists outside of
any particular implementation or computing hardware. It is part of
the theory, which has a long shelf life.

A particular approximation, algorithm and implementation has a short
shelf life.

I claim it does not make sense to regard the FO, FOI, . . . methods as
producing well-defined types of “estimates” in the same sense that
maximum likelihood estimates, or maximum a posteriori estimates are
defined.

If you use a criterion to define an estimation method then
implementations should be compared on the basis of that criterion,
not on something like mean squared error.
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