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Generalized Linear Mixed Models

When using linear mixed models (LMMs) we assume that the
response being modeled is on a continuous scale.

Sometimes we can bend this assumption a bit if the response is an
ordinal response with a moderate to large number of levels. For
example, the Scottish secondary school test results in the mlmRev

package are integer values on the scale of 1 to 10 but we analyze
them on a continuous scale.

However, an LMM is not suitable for modeling a binary response, an
ordinal response with few levels or a response that represents a count.
For these we use generalized linear mixed models (GLMMs).

To describe GLMMs we return to the representation of the response
as an n-dimensional, vector-valued, random variable, Y , and the
random effects as a q-dimensional, vector-valued, random variable, B.
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Parts of LMMs carried over to GLMMs

Random variables
Y the response variable
B the (possibly correlated) random effects
U the orthogonal random effects, such that B = ΛθU

Parameters
β - fixed-effects coefficients
σ - the common scale parameter (not always used)
θ - parameters that determine Var(B) = σ2ΛθΛ

T
θ

Some matrices
X the n × p model matrix for β
Z the n × q model matrix for b
P fill-reducing q × q permutation (from Z )
Λθ relative covariance factor, s.t. Var(B) = σ2ΛθΛ

T
θ

Douglas Bates (Stat. Dept.) GLMM Jan. 11, 2011 4 / 39



The conditional distribution, Y |U

For GLMMs, the marginal distribution, B ∼ N (0,Σθ) is the same as
in LMMs except that σ2 is omitted. We define U ∼ N (0, I q) such
that B = ΛθU .

For GLMMs we retain some of the properties of the conditional
distribution for a LMM

(Y |U = u) ∼ N
(
µY|U , σ

2I
)

where µY|U (u) = Xβ + ZΛθu

Specifically
I The conditional distribution, Y |U = u , depends on u only through the

conditional mean, µY|U (u).
I Elements of Y are conditionally independent. That is, the distribution,

Y |U = u , is completely specified by the univariate, conditional
distributions, Yi |U , i = 1, . . . ,n.

I These univariate, conditional distributions all have the same form.
They differ only in their means.

GLMMs differ from LMMs in the form of the univariate, conditional
distributions and in how µY|U (u) depends on u .
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Some choices of univariate conditional distributions

Typical choices of univariate conditional distributions are:
I The Bernoulli distribution for binary (0/1) data, which has probability

mass function

p(y |µ) = µy(1− µ)1−y , 0 < µ < 1, y = 0, 1

I Several independent binary responses can be represented as a binomial
response, but only if all the Bernoulli distributions have the same mean.

I The Poisson distribution for count (0, 1, . . . ) data, which has
probability mass function

p(y |µ) = e−µ
µy

y !
, 0 < µ, y = 0, 1, 2, . . .

All of these distributions are completely specified by the conditional
mean. This is different from the conditional normal (or Gaussian)
distribution, which also requires the common scale parameter, σ.
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The link function, g

When the univariate conditional distributions have constraints on µ,
such as 0 < µ < 1 (Bernoulli) or 0 < µ (Poisson), we cannot define
the conditional mean, µY|U , to be equal to the linear predictor,
Xβ +XΛθu , which is unbounded.

We choose an invertible, univariate link function, g , such that
η = g(µ) is unconstrained. The vector-valued link function, g , is
defined by applying g component-wise.

η = g(µ) where ηi = g(µi), i = 1, . . . ,n

We require that g be invertible so that µ = g−1(η) is defined for
−∞ < η <∞ and is in the appropriate range (0 < µ < 1 for the
Bernoulli or 0 < µ for the Poisson). The vector-valued inverse link,
g−1, is defined component-wise.
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“Canonical” link functions

There are many choices of invertible scalar link functions, g , that we
could use for a given set of constraints.

For the Bernoulli and Poisson distributions, however, one link function
arises naturally from the definition of the probability mass function.
(The same is true for a few other, related but less frequently used,
distributions, such as the gamma distribution.)

To derive the canonical link, we consider the logarithm of the
probability mass function (or, for continuous distributions, the
probability density function).

For distributions in this “exponential” family, the logarithm of the
probability mass or density can be written as a sum of terms, some of
which depend on the response, y , only and some of which depend on
the mean, µ, only. However, only one term depends on both y and µ,
and this term has the form y · g(µ), where g is the canonical link.
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The canonical link for the Bernoulli distribution

The logarithm of the probability mass function is

log(p(y |µ)) = log(1− µ) + y log

(
µ

1− µ

)
, 0 < µ < 1, y = 0, 1.

Thus, the canonical link function is the logit link

η = g(µ) = log

(
µ

1− µ

)
.

Because µ = P [Y = 1], the quantity µ/(1− µ) is the odds ratio (in
the range (0,∞)) and g is the logarithm of the odds ratio, sometimes
called “log odds”.

The inverse link is

µ = g−1(η) =
eη

1 + eη
=

1

1 + e−η
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Plot of canonical link for the Bernoulli distribution
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Plot of inverse canonical link for the Bernoulli distribution
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The canonical link for the Poisson distribution

The logarithm of the probability mass is

log(p(y |µ)) = log(y !)− µ+ y log(µ)

Thus, the canonical link function for the Poisson is the log link

η = g(µ) = log(µ)

The inverse link is
µ = g−1(η) = eη
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The canonical link related to the variance

For the canonical link function, the derivative of its inverse is the
variance of the response.

For the Bernoulli, the canonical link is the logit and the inverse link is
µ = g−1(η) = 1/(1 + e−η). Then

dµ

dη
=

e−η

(1 + e−η)2
=

1

1 + e−η
e−η

1 + e−η
= µ(1− µ) = Var(Y)

For the Poisson, the canonical link is the log and the inverse link is
µ = g−1(η) = eη. Then

dµ

dη
= eη = µ = Var(Y)
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The unscaled conditional density of U |Y = y

As in LMMs we evaluate the likelihood of the parameters, given the
data, as

L(θ,β|y) =
∫
Rq

[Y |U ](y |u) [U ](u) du ,

The product [Y |U ](y |u)[U ](u) is the unscaled (or unnormalized)
density of the conditional distribution U |Y .

The density [U ](u) is a spherical Gaussian density 1
(2π)q/2

e−‖u‖
2/2.

The expression [Y |U ](y |u) is the value of a probability mass function
or a probability density function, depending on whether Yi |U is
discrete or continuous.

The linear predictor is g(µY|U ) = η = Xβ + ZΛθu . Alternatively,
we can write the conditional mean of Y , given U , as

µY|U (u) = g−1 (Xβ + ZΛθu)
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The conditional mode of U |Y = y

In general the likelihood, L(θ,β|y) does not have a closed form. To
approximate this value, we first determine the conditional mode

ũ(y |θ,β) = argmax
u

[Y |U ](y |u) [U ](u)

using a quadratic approximation to the logarithm of the unscaled
conditional density.

This optimization problem is (relatively) easy because the quadratic
approximation to the logarithm of the unscaled conditional density
can be written as a penalized, weighted residual sum of squares,

ũ(y |θ,β) = argmin
u

∥∥∥∥[W 1/2(µ)
(
y − µY|U (u)

)
−u

]∥∥∥∥2
where W (µ) is the diagonal weights matrix. The weights are the
inverses of the variances of the Yi .

Douglas Bates (Stat. Dept.) GLMM Jan. 11, 2011 15 / 39



The PIRLS algorithm

Parameter estimates for generalized linear models (without random
effects) are usually determined by iteratively reweighted least squares
(IRLS), an incredibly efficient algorithm. PIRLS is the penalized
version. It is iteratively reweighted in the sense that parameter
estimates are determined for a fixed weights matrix W then the
weights are updated to the current estimates and the process
repeated.

For fixed weights we solve

min
u

∥∥∥∥[W 1/2
(
y − µY|U (u)

)
−u

]∥∥∥∥2
as a nonlinear least squares problem with update, δu , given by

P
(
ΛT
θ Z

TMWMZΛθ + I q

)
PTδu = ΛT

θ Z
TMW (y − µ)− u

where M = dµ/dη is the (diagonal) Jacobian matrix. Recall that for
the canonical link, M = Var(Y |U) = W −1.
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The Laplace approximation to the deviance

At convergence, the sparse Cholesky factor, L, used to evaluate the
update is

LLT = P
(
ΛT
θ Z

TMWMZΛθ + I q

)
PT

or
LLT = P

(
ΛT
θ Z

TMZΛθ + I q

)
PT

if we are using the canonical link.

The integrand of the likelihood is approximately a constant times the
density of the N (ũ ,LLT) distribution.

On the deviance scale (negative twice the log-likelihood) this
corresponds to

d(β,θ|y) = dg(y ,µ(ũ)) + ‖ũ‖2 + log(|L|2)

where dg(y ,µ(ũ)) is the GLM deviance for y and µ.
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Modifications to the algorithm

Notice that this deviance depends on the fixed-effects parameters, β,
as well as the variance-component parameters, θ. This is because
log(|L|2) depends on µY|U and, hence, on β. For LMMs log(|L|2)
depends only on θ.

It is likely that modifying the PIRLS algorithm to optimize
simultaneously on u and β would result in a value that is very close
to the deviance profiled over β.

Another approach is adaptive Gauss-Hermite quadrature (AGQ). This
has a similar structure to the Laplace approximation but is based on
more evaluations of the unscaled conditional density near the
conditional modes. It is only appropriate for models in which the
random effects are associated with only one grouping factor

Douglas Bates (Stat. Dept.) GLMM Jan. 11, 2011 18 / 39



Contraception data

One of the data sets in the "mlmRev" package, derived from data files
available on the multilevel modelling web site, is from a fertility
survey of women in Bangladesh.

One of the (binary) responses recorded is whether or not the woman
currently uses artificial contraception.

Covariates included the woman’s age (on a centered scale), the
number of live children she had, whether she lived in an urban or rural
setting, and the district in which she lived.

Instead of plotting such data as points, we use the 0/1 response to
generate scatterplot smoother curves versus age for the different
groups.
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Contraception use versus age by urban and livch
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Comments on the data plot

These observational data are unbalanced (some districts have only 2
observations, some have nearly 120). They are not longitudinal (no
“time” variable).

Binary responses have low per-observation information content
(exactly one bit per observation). Districts with few observations will
not contribute strongly to estimates of random effects.

Within-district plots will be too imprecise so we only examine the
global effects in plots.

The comparisons on the multilevel modelling site are for fits of a
model that is linear in age, which is clearly inappropriate.

The form of the curves suggests at least a quadratic in age.

The urban versus rural differences may be additive.

It appears that the livch factor could be dichotomized into“0”versus
“1 or more”.
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Preliminary model using Laplacian approximation

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age + I(age^2) + urban + livch + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2388.774 2433.313 -1186.387 2372.774

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.2253 0.4747

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.019342 0.174010 -5.858

age 0.003516 0.009212 0.382

I(age^2) -0.004487 0.000723 -6.206

urbanY 0.684625 0.119691 5.720

livch1 0.801901 0.161899 4.953

livch2 0.901037 0.184801 4.876

livch3+ 0.899413 0.185435 4.850
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Comments on the model fit

This model was fit using the Laplacian approximation to the deviance.

There is a highly significant quadratic term in age.

The linear term in age is not significant but we retain it because the
age scale has been centered at an arbitrary value (which,
unfortunately, is not provided with the data).

The urban factor is highly significant (as indicated by the plot).

Levels of livch greater than 0 are significantly different from 0 but
may not be different from each other.
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Reduced model with dichotomized livch

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age + I(age^2) + urban + ch + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2385.230 2418.634 -1186.615 2373.230

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.2242 0.4734

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -0.9913326 0.1675652 -5.916

age 0.0061718 0.0078275 0.788

I(age^2) -0.0045605 0.0007143 -6.385

urbanY 0.6804429 0.1194836 5.695

chY 0.8462275 0.1470599 5.754
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Comparing the model fits

A likelihood ratio test can be used to compare these nested models.

> anova(cm2 , cm1)

Data: Contraception

Models:

cm2: use ~ age + I(age^2) + urban + ch + (1 | district)

cm1: use ~ age + I(age^2) + urban + livch + (1 | district)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

cm2 6 2385.2 2418.6 -1186.6 2373.2

cm1 8 2388.8 2433.3 -1186.4 2372.8 0.4557 2 0.7963

The large p-value indicates that we would not reject cm2 in favor of
cm1 hence we prefer the more parsimonious cm2.

The plot of the scatterplot smoothers according to live children or
none indicates that there may be a difference in the age pattern
between these two groups.

Douglas Bates (Stat. Dept.) GLMM Jan. 11, 2011 25 / 39



Contraception use versus age by urban and ch
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Allowing age pattern to vary with ch

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2379.225 2418.197 -1182.613 2365.225

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.2225 0.4717

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.3045829 0.2134770 -6.111

age -0.0465265 0.0217020 -2.144

chY 1.1909850 0.2059497 5.783

I(age^2) -0.0056626 0.0008331 -6.797

urbanY 0.7009697 0.1200577 5.839

age:chY 0.0672241 0.0252939 2.658
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Prediction intervals on the random effects
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Extending the random effects

We may want to consider allowing a random effect for urban/rural by
district. This is complicated by the fact the many districts only have
rural women in the study

district

urban 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 54 20 0 19 37 58 18 35 20 13 21 23 16 17 14 18

Y 63 0 2 11 2 7 0 2 3 0 0 6 8 101 8 2

district

urban 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N 24 33 22 15 10 20 15 14 49 13 39 45 25 45 27 24

Douglas Bates (Stat. Dept.) GLMM Jan. 11, 2011 29 / 39



Including a random effect for urban by district

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (urban | district)

Data: Contraception

AIC BIC logLik deviance

2371.636 2421.742 -1176.818 2353.636

Random effects:

Groups Name Variance Std.Dev. Corr

district (Intercept) 0.3772 0.6142

urbanY 0.5271 0.7260 -0.794

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.308648 0.221297 -5.914

age -0.045071 0.021729 -2.074

chY 1.182726 0.206610 5.724

I(age^2) -0.005509 0.000839 -6.567

urbanY 0.766746 0.159863 4.796

age:chY 0.064845 0.025348 2.558

Correlation of Fixed Effects:

(Intr) age chY I(g^2) urbanY

age 0.694

chY -0.853 -0.790

I(age^2) -0.096 0.298 -0.093

urbanY -0.371 -0.061 0.087 -0.017

age:chY -0.572 -0.929 0.673 -0.496 0.054
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Significance of the additional random effect

> anova(cm4 ,cm3)

Data: Contraception

Models:

cm3: use ~ age * ch + I(age^2) + urban + (1 | district)

cm4: use ~ age * ch + I(age^2) + urban + (urban | district)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

cm3 7 2379.2 2418.2 -1182.6 2365.2

cm4 9 2371.6 2421.7 -1176.8 2353.6 11.589 2 0.003044

The additional random effect is highly significant in this test.

Most of the prediction intervals still overlap zero.

A scatterplot of the random effects shows several random effects
vectors falling along a straight line. These are the districts with all
rural women or all urban women.
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Prediction intervals for the bivariate random effects
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Scatter plot of the BLUPs
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Nested simple, scalar random effects versus vector-valued

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (1 | urban:district) + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2371.675 2416.214 -1177.838 2355.675

Random effects:

Groups Name Variance Std.Dev.

urban:district (Intercept) 0.3086026 0.55552

district (Intercept) 0.0006808 0.02609

Number of obs: 1934, groups: urban:district, 102; district, 60

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.3042507 0.2188531 -5.959

age -0.0448232 0.0217800 -2.058

chY 1.1810768 0.2070578 5.704

I(age^2) -0.0054804 0.0008384 -6.537

urbanY 0.7613874 0.1683946 4.521

age:chY 0.0646389 0.0253854 2.546
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Using the interaction term only

Generalized linear mixed model fit by maximum likelihood [’merMod’]

Family: binomial

Formula: use ~ age * ch + I(age^2) + urban + (1 | urban:district)

Data: Contraception

AIC BIC logLik deviance

2368.571 2407.542 -1177.285 2354.571

Random effects:

Groups Name Variance Std.Dev.

urban:district (Intercept) 0.3218 0.5673

Number of obs: 1934, groups: urban:district, 102

Fixed effects:

Estimate Std. Error z value

(Intercept) -1.3094329 0.2195727 -5.964

age -0.0448438 0.0217955 -2.057

chY 1.1814377 0.2072676 5.700

I(age^2) -0.0054781 0.0008396 -6.525

urbanY 0.7643320 0.1702332 4.490

age:chY 0.0646037 0.0254077 2.543
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Comparing models with random effects for interactions

> anova(cm6 ,cm5 ,cm4)

Data: Contraception

Models:

cm6: use ~ age * ch + I(age^2) + urban + (1 | urban:district)

cm5: use ~ age * ch + I(age^2) + urban + (1 | urban:district) + (1 |

cm5: district)

cm4: use ~ age * ch + I(age^2) + urban + (urban | district)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

cm6 7 2368.6 2407.5 -1177.3 2354.6

cm5 8 2371.7 2416.2 -1177.8 2355.7 0.0000 1 1.0000

cm4 9 2371.6 2421.7 -1176.8 2353.6 2.0393 1 0.1533

The random effects seem to best be represented by a separate
random effect for urban and for rural women in each district.

The districts with only urban women in the survey or with only rural
women in the survey are naturally represented in this model.
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Conclusions from the example

Again, carefully plotting the data is enormously helpful in formulating
the model.

Observational data tend to be unbalanced and have many more
covariates than data from a designed experiment. Formulating a
model is typically more difficult than in a designed experiment.

A generalized linear model is fit with the function glmer() which
requires a family argument. Typical values are binomial or poisson

Profiling is not provided for GLMMs at present but will be added.

We use likelihood-ratio tests and z-tests in the model building.
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A word about overdispersion

In many application areas using “pseudo” distribution families, such as
quasibinomial and quasipoisson, is a popular and well-accepted
technique for accomodating variability that is apparently larger than
would be expected from a binomial or a Poisson distribution.

This amounts to adding an extra parameter, like σ, the common scale
parameter in a LMM, to the distribution of the response.

It is possible to form an estimate of such a quantity during the IRLS
algorithm but it is an artificial construct. There is no probability
distribution with such a parameter.

I find it difficult to define maximum likelihood estimates without a
probability model. It is not clear how this “distribution which is not a
distribution” could be incorporated into a GLMM. This, of course,
does not stop people from doing it but I don’t know what the
estimates from such a model would mean.
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Summary

GLMMs allow for the conditional distribution, Y|B = b, to be other
than a Gaussian. A Bernoulli (or, more generally, a binomial)
distribution is used to model binary or binomial responses. A Poisson
distribution is used to model responses that are counts.

The conditional mean depends upon the linear predictor, Xβ + Zb,
through the inverse link function, g−1.

The conditional mode of the random effects, given the observed data,
y , is determined through penalized iteratively reweighted least
squares (PIRLS).

We optimize the Laplace approximation at the conditional mode to
determine the mle’s of the parameters. In some simple cases, a more
accurate approximation, adaptive Gauss-Hermite quadrature (AGQ),
can be used instead, at the expense of greater computational
complexity.
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